An algorithm for general infinite horizon lot sizing with deterministic demand

نویسنده

  • Milan Horniaček
چکیده

We present an algorithm for solving an infinite horizon discrete time lot sizing problem with deterministic non-stationary demand and discounting of future cost. Besides non-negativity and finite supremum over infinite horizon, no restrictions are placed on single period demands. (In particular, they need not follow any cyclical pattern). Variable procurement cost, fixed ordering cost, and holding cost can be different in different periods. The algorithm uses forward induction and its essence lies in the use of critical periods. Period j following t is the critical period of t if satisfying demands in any subset of the set of periods between t and j, including j and excluding t, from an order in t is not more expensive than satisfying it from an order in a later period and j is the last period with this property. When deciding whether to place an order in period t, all demands from t to its critical period are taken into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A minimum concave-cost dynamic network flow problem with an application to lot-sizing

We consider a minimum-cost dynamic network-flow problem on a very special network. This network flow problem models an infinite-horizon, lot-sizing problem with deterministic demand and periodic data. We permit two different objectives: minimize long-run average-cost per period and minimize the discounted cost. In both cases we give polynomial algorithms when certain arc costs are fixed charge ...

متن کامل

A POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE

The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...

متن کامل

Infinite Horizon Production Planning in Time-varying Systems with Convex Production and Inventory Costs

We consider the planning of production over the infinite horizon in a system with timevarying convex production and inventory holding costs. This production lot size problem is frequently faced in industry where a forecast of future demand must be made and production is to be scheduled based on the forecast. Because forecasts of the future are costly and difficult to validate, a firm would like...

متن کامل

A Polynomial Algorithm for the Multi-Stage Production-Capacitated Lot-Sizing Problem

The multi-stage lot-sizing problem with production capacities (MLSP-PC) deals with a supply chain that consists of a manufacturer with stationary production capacity and intermediaries (distribution centers or wholesalers) and a retailer to face deterministic demand. An optimal supply chain plan for the MLSP-PC specifies when and how many units each organization of the supply chain has to produ...

متن کامل

Formulations for Dynamic Lot Sizing with Service Levels

In this paper, we study deterministic dynamic lot-sizing problems with service level constraints on the total number of periods in which backorders can occur over the finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the structure of its solution. We show that an optimal solution to this problem can be found in O(n2κ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017